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Information about Deviation from Hardy-Weinberg
Proportions in Cases
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For assessment of genetic association between single-nucleotide polymorphisms (SNPs) and disease status, the logistic-regression model

or generalized linear model is typically employed. However, testing for deviation from Hardy-Weinberg proportion in a patient group

could be another approach for genetic-association studies. The Hardy-Weinberg proportion is one of the most important principles

in population genetics. Deviation from Hardy-Weinberg proportion among cases (patients) could provide additional evidence for the

association between SNPs and diseases. To develop a more powerful statistical test for genetic-association studies, we combined evidence

about deviation from Hardy-Weinberg proportion in case subjects and standard regression approaches that use case and control subjects.

In this paper, we propose two approaches for combining such information: the mean-based tail-strength measure and the median-based

tail-strength measure. These measures integrate logistic regression and Hardy-Weinberg-proportion tests for the study of the association

between a binary disease outcome and an SNP on the basis of case- and control-subject data. For both mean-based and median-based tail-

strength measures, we derived exact formulas to compute p values. We also developed an approach for obtaining empirical p values with

the use of a resampling procedure. Results from simulation studies and real-disease studies demonstrate that the proposed approach is

more powerful than the traditional logistic-regression model. The type I error probabilities of our approach were also well controlled.
Introduction

Traditionally, regression approaches have been used for

the assessment of the genetic association between sin-

gle-nucleotide polymorphisms (SNPs) and disease status

and have been applied to detect a variety of disease-caus-

ing SNPs.1–8 However, the regression approaches do not

integrate information that is available from other sour-

ces, such as deviation from Hardy-Weinberg (hereafter,

HW) proportion in cases. Therefore, we propose an ap-

proach for gene-association assessment that integrates

the HW-proportion information in the regression ap-

proaches.

The HW proportion is one of the most important princi-

ples in population genetics. Consider a simple case with

two alleles, A and a, at a single locus. If the allele frequency

of A is denoted as p, then the frequency of a is (1 � p). Un-

der the assumption of HW proportion in the population,

the frequencies of three possible genotypes, (A, A), (A, a),

and (a, a), are the products of allele frequencies p2,

2p(1 � p), and (1 � p)2, respectively.

In case-control association studies, the HW proportion

assessed in control subjects is widely used as a quality-con-

trol tool for identifying genotyping errors.9–12 However,

researchers also suggest that deviation from HW propor-

tion—which can be evaluated via a comparison of the

difference between observed genotype frequencies and

the corresponding expected frequencies 13—among cases

(patients) can provide additional evidence for a real associ-

ation between SNP genotypes and disease outcomes.14–18

Thus, testing for deviation from HW proportion could be

another approach for the study of genetic association.
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To develop a more powerful statistical test for genetic as-

sociation, we combined evidence from HW-proportion de-

viation and from regression approaches to perform the

case-control association study. A mean-based tail-strength

(TS) measure for association study is proposed, in which

we have combined two different hypothesis tests, (1) the

logistic-regression model and (2) the test for deviation

from HW proportion in case subjects. Although these

two hypothesis tests are quite different, given that they

use different test statistics and test different aspects of

the dataset, both tests can provide information about the

association between SNPs and diseases. These two tests

are also statistically correlated. Both cases and controls

are used in logistic regression, whereas the HW-proportion

test, as proposed, uses data from cases only. The proposed

mean-based TS measure allows dependence between these

two tests. We further extended the mean-based TS measure

to a median-based TS (TSM) measure by using median

values instead of expected values. For both measures, we

derived the exact formulas for calculation of p values. We

also propose an approach for estimating empirical p values

with the use of a resampling procedure.

On the basis of the exact and empirical results from sim-

ulated data and real biological examples, our proposed ap-

proach is more powerful than the traditional association

study approaches, achieving higher power than that

achieved by each individual test and maintaining good

control over type I error probabilities. This combined ap-

proach is also valid for performing association studies

with the use of other statistical methods, including piece-

wise logistic regression, nonparametric logistic regression,

and functional logistic regression.
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Material and Methods

For simplicity, we assume two alleles, A and a, at a locus, with A as

the deleterious allele and a as the normal allele. We use a categori-

cal random variable, X ¼ {0, 1, 2}, to denote the three genotypes,

(A, A), (A, a), and (a, a). Note that the values of the random vari-

able correspond to the number of copies of the A allele. This cod-

ing assumes an additive model, but different coding for represent-

ing a dominant or recessive model can also be used. Our proposed

approach is not restricted to an additive model. We defined an-

other categorical random variable, Y ¼ {0,1}, to indicate the case-

control status, with 0 representing individuals in the control

group and 1 representing individuals in the case group.

Given a dataset of observations of random variables X and Y

corresponding to the genotypes of a SNP and the case-control out-

comes, respectively, two hypothesis tests can be applied for

detection of the association between disease and SNP: the logis-

tic-regression approach, using cases and controls, and the test

for deviation from HW proportion among cases. Our goal was to

combine these two tests to achieve a more powerful statistical

test for association study.

Tail-Strength Measures
A tail-strength (TS) measure was recently developed by Taylor and

Tibshirani19 for the study of large amounts of microarray data.

This measure assesses the overall univariate strength of a large

set of features in microarray and other genomic studies. We ap-

plied and extended the TS measure to the problem of integrating

the logistic-regression association approach and the test for devia-

tion from HW proportion, as briefly described below.

Consider m p values pi, i ¼ 1,.m, with respect to the m null hy-

potheses. The global hypothesis is that all the individual hypoth-

eses hold simultaneously. Now denote p(1) % p(2) % .p(m) as the

ordered p values. Thus, the TS measure is defined as follows:

TS
�
p1, p2,.pm

�
¼ 1

m

Xm

i¼1

�
1� pðiÞ

mþ 1

i

�
: (1)

Note that under the null hypothesis, each pi has uniform distri-

bution, so that the ordered p value p(i) follows a beta distribution

with the mean as i/(m þ 1). Hence, the test statistic TS has an ex-

pectation of zero under the null hypothesis. Taylor and Tibshirani

showed in their paper that the TS measure is closely related to the

false-discovery rate (FDR) approach to multiple-hypothesis test-

ing. From this property, they derived the asymptotic distribution

for TS when m is large, which is normally distributed with

a mean of 0 and a variance of 1/m. They also showed that the TS

measure has a close relationship to a weighted area under a

receiver operating characteristic (ROC) curve.

The TS measure calculates the linear combination of the differ-

ence between each p value and its expected value. In this form, as

Equation (1), it gives more weight to the smaller p values so that it

is more sensitive to deviations in the tail. When the TS value

approaches 1, it shows that there are more small p values than

we would expect by chance and then indicates the evidence

against the global-null hypothesis.19 In this way, we would expect

that the test statistic TS for the global hypothesis should be more

powerful than each individual test.

In our specific problem, the asymptotic distribution of TS can-

not be applied. Recall that we now consider two hypothesis tests,

which are correlated. We are proposing to use the TS measure for

combining the logistic-regression association model that uses
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cases and controls for testing H01 (H01: Association does not exist

between SNP and disease) with evidence derived from the Hardy-

Weinberg proportion test for testing H02 (H02: HW proportion

exists among case subjects).

Consider a single SNP, X. Recall that Y is the random variable

corresponding to the outcomes of the disease of concern. Let T1

be the test statistic for using the logistic regression model to detect

the association between X and Y (i.e., H01) and T2 be the test sta-

tistic for testing deviation from the HW proportion among cases

(i.e., H02). In our proposal, we used the likelihood-ratio test for lo-

gistic regression and performed the exact test for testing HW-pro-

portion deviation in the case group.13,20,21 Let p1 and p2 be the

p values that correspond to T1 and T2. Accordingly, p(1) and p(2)

are the ordered p values. Therefore, we can define the tail-strength

measure that combines the two p values as follows:

TSðp1, p2Þ ¼
1

2

��
1� pð1Þ 3 3

�
þ
�

1� pð2Þ 3
3

2

��
(2)

to test the global-null hypothesis that the SNP is not associated

with disease.

The domain of random variable TS is [�1.25, 1], given that 0 %

p(1) % p(2) % 1. Recall that p(1) and p(2) follow a beta distribution

under the null hypothesis. Using a bivariate transformation, we

can derive the explicit formula for the probability-density func-

tion of the tail-strength random variable TS:

fTSðxÞ ¼
8

27

�
5

2
þ 2x

�
, if x ˛½ �1:25, 0:25�,

32

27
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Given an observation of TS*, the exact p values of random

variable TS can be calculated by a simple integral of the above

equation such that

p value ¼ PðTS > TS�Þ ¼
ð1

TS�
fTSðxÞdx (4)

TS is a measure that uses means for comparison with observed

p values. But in some situations, median-based estimators are

more robust for extreme observations. Because we are dealing

with small p values, a median-based tail-strength measure might

be more appropriate under some circumstances, whereas a mean-

based measure might apply to other situations. Therefore, we devel-

oped a measure for the assessment of tail strength with the use of

median values. We call it the tail-strength median (TSM) measure,

in which the linear combination of the difference between p values

and corresponding median values, rather than expected values, is

calculated under the null hypothesis. The median values for p(1)

and p(2) are 1� 1=
ffiffiffi
2
p

and 1=
ffiffiffi
2
p

, respectively. Therefore, the TSM

measure can be defined as

TSMðp1, p2Þ ¼
1

2
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for testing the global-null hypothesis for the association between

the SNP and the disease in question.

We derived the explicit form for the probability-density func-

tion of the tail-strength-median random variable TSM. In this

situation, the domain of the random variable is ½�
ffiffiffi
2
p

, 1�.
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Given an observation of TSM*, the exact p values of random

variable TSM can be calculated by a simple integral of the above

equation, such that

p value ¼ PðTSM > TSM�Þ ¼
ð1

TSM�
gTSMðxÞdx (7)

Compared with TS, TSM assigns even more weight to the smaller p

values but less weight to the bigger p values. Note that the FDR

approach can be explained as a procedure in which ordered p

values are compared with the functions of their expected values.22

Using similar thinking, we now consider median values of ordered

p values instead of expected p values. Consequently, the TSM mea-

sure also has a close relationship to the FDR approach to multiple-

hypothesis testing. (The derivations for the explicit forms of den-

sity functions of TS and TSM and associated p values are given in

Appendix 1.)

Permutation Tests
Although the exact p values of TS and TSM are simple and straight-

forward to compute and interpret, the derivations of underlying

assumptions might make the exact p values based on the explicit

formulas either too conservative or too liberal. Therefore, we also

proposed an approach for estimating empirical p values of TS and

TSM with the use of a permutation procedure. For each permuta-

tion step, we resample the SNP-values vector by using the geno-

type frequencies calculated from the allele frequencies of the

whole dataset, including the SNP values in both case and control

groups, but keep all the other random-variable vectors (e.g., cova-

riates) unchanged. By resampling the SNP values, we ensure that

there will be no association between the outcomes and the SNP.

The empirical p values for both tests are estimated by the propor-

tion of TS or TSM values resulting from permutations that are

greater than the observed TS or TSM values. The performance of

the permutation tests is evaluated in Appendix 2.

Simulation Studies
We examined the performance of the proposed approach by per-

forming simulation studies first and then applying the approach

to real diseases. In order to simulate data related to the genotypes

of SNPs and the outcomes of case-control status, two logistic

models were used. In the first simulated model, we considered

only SNPs as the risk factors associated with diseases and specified

the frequencies of genotypes and the odds ratios (ORs) of the logis-

tic model. We performed further simulation studies based on a real

disease (lung cancer) model, involving SNPs and other statistically

significant risk factors. The second simulated model was based on

a lung-cancer study of current smokers.23 We studied different pre-

defined genotype frequencies and ORs of SNPs while citing those

of all the other risk factors from the literature. In the following

Table 1. Simulation Parameters for Data Sets Generated
from Model 1

Data Set b0 b1 b2 SNP 2

Data 1 �2.0 0.3 (OR ¼ 1.35) 1.0 3 10�10 (OR ¼ 1) Observed

Data 2 �2.0 0.3 (OR ¼ 1.35) 1.0 3 10�10 (OR ¼ 1) Unobserved

Data 3 �2.0 0.3 (OR ¼ 1.35) 0.3 (OR ¼ 1.35) Observed

Data 4 �2.0 0.3 (OR ¼ 1.35) 0.3 (OR ¼ 1.35) Unobserved

Data 5 �2.0 0.5 (OR ¼ 1.65) 0.3 (OR ¼ 1.35) Observed

Data 6 �2.0 0.5 (OR ¼ 1.65) 0.3 (OR ¼ 1.35) Unobserved
sections, we describe the models for these simulation studies and

report the results accordingly.

Model 1

Considering two independent SNPs at two different genetic loci,

X1 and X2, we defined the corresponding logistic model of the

association between SNPs and case-control outcomes as

Logit ðPðY ¼ 1ÞÞ ¼ b0 þ b1X1 þ b2X2

First, we simulated genotypes of X1 and X2 under the null hypoth-

esis—that is, under the assumption of HW proportion in the

general population. In this model, unless otherwise specified, we

assumed minor-allele frequencies of 10% for SNP X1 and 40%

for SNP X2. Given the dataset of realizations of SNPs X1 and X2,

one could randomly generate disease status for each individual ac-

cording to the logistic model above. In this way, we simulated

a large amount of data on the population of interest, then ran-

domly sampled 500 disease-related cases along with 500 normal

controls from the population, with the assumption of an alterna-

tive global hypothesis. Note that we assumed HW proportion in

the general population; however, after simulation, cases might

not be in HW proportion. Thus, given the data set simulated

from the above model, we could evaluate the performance of the

TS measure and the TSM measure proposed to combine the two

hypothesis tests.

We generated six datasets from Model 1, with different ORs asso-

ciated with SNP X1, while either observing or not observing the sec-

ond SNP, X2. The specific parameters for different datasets are given

in Table 1. b0 remained fixed in all the datasets. Two ORs for SNP X1,

OR¼ 1.35 and OR ¼ 1.65, were studied. According to Table 1, SNP

X2 could be insignificantly associated with disease (OR ¼ 1) and

observed (genotyped), insignificantly associated with disease and

unobserved, significantly associated with disease (OR ¼ 1.35) and

observed, or significantly associated with disease (OR ¼ 1.35) but

unobserved. For example, Data set 3 was generated at b0 ¼ �2,

b1¼ 0.3, and b2¼ 0.3, and SNP X2 was observed. Averages of signi-

ficance reported in the Results section are based on 100 replicates,

which included 500 cases and 500 controls. The significance of

each replicate was determined by both exact p values and empirical

p values derived from the permutation tests described above.

Model 2

We simulated data from a lung-cancer model based on the study of

Spitz et al.,23 as shown in Table 2. All the statistically significant

risk factors associated with lung cancer among current smokers

are listed, including a history of emphysema, exposure to dust, ex-

posure to asbestos, family history of any cancer, a history of hay

fever, and smoking intensity (pack-years), with the cut points

Table 2. Lung-Cancer Models

Risk Factors Coefficients of Logistic Model Prevalence

Intercept �0.7173

SNP 0.3 (OR ¼ 1.35)/0.5 (OR ¼ 1.65)

Smoking 2.3 (OR ¼ 9.97)/0.0 (OR ¼ 1) 21.0%

Emphysema 0.7561 (OR ¼ 2.13) 35.0%

Dust exposure 0.3067 (OR ¼ 1.36) 21.0%

Asbestos exposure 0.4109 (OR ¼ 1.51) 23.7%

Family history 0.3859 (OR ¼ 1.47) 7.1%

Hay fever 0.4047 (OR ¼ 1.50) 9.0%

Pack-years

28-41.9 0.2219 (OR ¼ 1.25) 25.0%

42-57.4 0.3747 (OR ¼ 1.45) 25.0%

R57.5 0.6151 (OR ¼ 1.85) 25.0%
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Table 3. Average p Values from Different Tests in Simulations for Model 1

Data Set p-logita p-HWPb

TS TSM

Empirical TS p Values Exact TS p Values Empirical TSM p Values Exact TSM p Values

Data 1 0.0099 0.0264 0.0006 0.0009 0.0006 0.0009

Data 2 0.0135 0.0257 0.0007 0.0010 0.0008 0.0011

Data 3 0.0130 0.0288 0.0008 0.0012 0.0009 0.0013

Data 4 0.0147 0.0254 0.0009 0.0012 0.0009 0.0013

Data 5 0.0044 0.0261 0.0004 0.0006 0.0004 0.0006

Data 6 0.0041 0.0246 0.0004 0.0005 0.0004 0.0006

a p value from logistic-regression test.
b p value from HW-proportion test.
based on the quartile of current smoker pack-years in control sub-

jects. For the purpose of our study, two more factors were consid-

ered: smoking status and existence of a single SNP. We defined two

models with respect to smoking status. The two lung-cancer

models correspond to two groups of people: the general lung-can-

cer population and the current-smoker lung-cancer population.

We, therefore, refer to them as the ‘‘general model’’ and the

‘‘current-smoker model.’’ When we only considered the current-

smoker lung-cancer population, we removed the smoking risk

factor from the logistic model; when we studied the whole popu-

lation, smoking status was included and was an extremely signi-

ficant variable in the model.24

For the purpose of simulation, all the ORs of the risk factors, ex-

cept SNP, were from the Spitz et al. study.23 The prevalences of the

risk factors cited came from different papers or statistical summa-

ries: smoking,23 history of emphysema,25 exposure to dust,26 ex-

posure to asbestos,27 family history of any cancer,28 and history

of hay fever.25 Table 2 lists the parameters that we used to simulate

the data according to the model described above. For example, the

OR for a history of emphysema was 2.13, and its prevalence was

set to 35%. The OR for smoking status was defined as 1 in the

current-smoker model and as approximately 10 in the general

model, because smoking is the most significant risk factor for lung

cancer.

In the lung-cancer models, we wanted to demonstrate the per-

formance of our approach for SNP association with different logis-

tic coefficients (ORs) and different genotype frequencies. There-

fore, for each model, we generated six datasets with respect to

different ORs of the SNP, as well as different genotype frequencies,

on the basis of the ORs and prevalences listed in Table 2 for all the

other risk factors for lung cancer. We exclusively studied two ORs

for the SNP, OR ¼ 1.35 and OR ¼ 1.65, as in Model 1. For each OR,

we used minor-allele frequencies of 10%, 30%, and 50% (from rare

to more common). We used the same approach for simulation and

the assumption of the alternative hypothesis used in Model 1, and

100 replicates were generated for each scenario, including 500

cases and 500 controls in each replicate. The significance of each

replicate was also determined by both exact p values and empirical

p values.

Type I Error Estimate
We performed additional simulations to examine the type I error

probability of our approach under the global-null hypothesis of

no association between the SNP and the disease. For both simula-

tion Model 1 and Model 2, we used the same settings as above, ex-

cept that the coefficient of SNP for the logistic model was set to

zero (OR ¼ 1). We generated four datasets from Model 1, which
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correspond to data sets 1–4 in Table 1, except that b1 ¼ 0 (data

sets 5 and 6 are exactly the same as Data sets 3 and 4 under the

null hypothesis). To test Model 2, we generated three datasets

from the general model with respect to different genotype fre-

quencies, along with three datasets from the current-smoker

model. For each configuration, 10,000 simulated replicates were

generated, each with 500 cases and 500 controls.

Results

Model 1

All of the resulting logistic-regression p values, HW-propor-

tion test p values, empirical p values of TS and TSM, and ex-

act p values of TS and TSM are reported in Table 3. For all

tests, we reported the average results, grouped with respect

to TS and TSM. For instance, for data set 3 (generated with

b0 ¼ �2.0, b1 ¼ 0.3, and b2 ¼ 0.3, and in which SNP X2

was observed; see Table 1), on the basis of 100 replicates,

the average p value obtained from logistic regression with

the use of cases and controls was 0.013, whereas the average

p value from the HW-proportion test in the case group was

0.0288. After applying the TS measure and the TSM measure,

the average empirical p values from 100,000 permutations

were 0.0008 and 0.0009 for TS and TSM, respectively, and

the average exact p values calculated from Equations (4)

and (7) were 0.0012 and 0.0013 for TS and TSM, respectively.

We obtained more significant p values by using both TS

and TSM measures as compared with those obtained with

the use of logistic regression. When the SNP X2 was signif-

icantly associated with the disease, whether or not we

could observe the values of SNP X2, we obtained nearly

identical exact and empirical p values for both measures

(see results for data sets 3–6 from Table 3). The empirical

and exact p values were very similar, but the empirical ap-

proach yielded slightly more liberal p values, possibly be-

cause we used 100,000 permutations. However, the exact

p values were still satisfactory in this situation, because

they are computationally more practical than the use of

permutation tests.

Because all the replicates in each dataset were simulated

under the alternative hypothesis, we examined the statisti-

cal power of our approach. Table 4 shows the observed

power based on 100 replicates for the six data sets (for

which average p values are reported in Table 3) at the



Table 4. Power Comparison at 0.01, 0.005, and 0.001 Significance Levels in Simulations for Model 1

Power for Logistic Model

Power for TS Power for TSM

Empirical Powers Exact Powers Empirical powers Exact powers

Data Set 0.01 0.005 0.001 0.01 0.005 0.001 0.01 0.005 0.001 0.01 0.005 0.001 0.01 0.005 0.001

Data 1 0.67 0.54 0.26 1.00 1.00 0.80 1.00 1.00 0.73 1.00 1.00 0.81 1.00 0.99 0.73

Data 2 0.51 0.32 0.16 1.00 1.00 0.80 1.00 0.98 0.63 1.00 0.99 0.74 1.00 0.98 0.63

Data 3 0.63 0.43 0.22 1.00 1.00 0.76 1.00 0.96 0.56 1.00 0.99 0.76 1.00 0.95 0.57

Data 4 0.49 0.40 0.21 1.00 1.00 0.67 1.00 0.99 0.58 1.00 1.00 0.66 1.00 0.97 0.57

Data 5 0.86 0.85 0.66 1.00 1.00 0.90 1.00 1.00 0.87 1.00 1.00 0.89 1.00 0.99 0.87

Data 6 0.87 0.83 0.63 1.00 1.00 0.93 1.00 0.99 0.92 1.00 0.99 0.93 1.00 0.99 0.92
nominal significance levels 0.01, 0.005, and 0.001. The

power for logistic regression, as well as the empirical power

and exact power for both TS and TSM, are reported in Ta-

ble 4. The results are grouped into two panels with respect

to the two tail-strength measures. Given that bigger ORs

imply a more-significant association between factors and

diseases, we would expect to see more small p values in

this situation. So, it is not surprising that the power is

higher when the OR increases from 1.35 to 1.65 in the lo-

gistic-regression model. After we integrated evidence from

the HW-proportion test among case subjects, our approach

for association study gained considerable power compared

to that of the logistic-regression model. For instance, the

observed powers for data set 3 with the use of logistic re-

gression were 63%, 43%, and 22% for the defined signifi-

cance levels 0.01, 0.005, and 0.001, respectively. When

the TS measure was used, the observed empirical powers

were 100%, 100%, and 76% at significance levels 0.01,

0.005, and 0.001, respectively; and the observed exact

powers were 100%, 96%, and 56%, respectively. Overall,

the performance of the TSM measure was similar to that

of the TS measure in this model.

Model 2

Tables 5–8 report all the resulting average p values and

powers for the logistic-regression approach, HW-proportion

test among the case group, and empirical and exact tests for

both TS and TSM for both lung-cancer-simulation models.
Consider the general model first. In this model, the OR

of smoking status is about 10. The average p values are

shown in Table 5. The results are arranged into two panels

with respect to TS and TSM. As expected, we see trends of

decreasing average p values for logistic regression as the

OR increases from 1.35 to 1.65 and as the minor allele fre-

quency increases from 10% to 50%. For example, a dataset

was generated under the scenario of OR ¼ 1.65 and geno-

type frequencies of 81%, 18%, and 1%. On the basis of 100

replicates, and under the alternative hypothesis of an asso-

ciation existing between the SNP and lung cancer, the

average p value obtained from logistic regression analysis

was 0.0069, and the average p value for the HW-proportion

test among case subjects was 0.0278. For both TS and TSM,

the average empirical p value for this scenario, based on

100,000 permutations, was 0.0005, and the average exact

p value calculated from the exact formula was 0.0007.

Even when the logistic p values were already highly signif-

icant, our approach still provided similarly significant em-

pirical and exact p values. For example, the logistic p value

of the data set generated with OR ¼ 1.65 and allele fre-

quencies 25%, 50%, and 25% was 0.0002, and the empiri-

cal and exact p values were 0.0003 and 0.0002 for both

measures, respectively. The results demonstrate that our

approach achieves more-significant p values by integrating

the evidence from the HW-proportion test in the case

group and that from association from traditional logistic

regression with cases and controls used.
Table 5. Average p Values from Different Tests in Simulations for the General Model

Data Sets p-logita p-HWPb

TS TSM

Empirical TS p Values Exact TS p Values Empirical TSM p Values Exact TSM p Values

b ¼ 0.3 (OR ¼ 1.35)

(0.81, 0.18, 0.01) 0.0135 0.0287 0.0008 0.0012 0.0009 0.0013

(0.49, 0.42, 0.09) 0.0079 0.0247 0.0006 0.0007 0.0006 0.0007

(0.25, 0.50, 0.25) 0.0057 0.0272 0.0006 0.0007 0.0006 0.0006

b ¼ 0.5 (OR ¼ 1.65)

(0.81, 0.18, 0.01) 0.0069 0.0278 0.0005 0.0007 0.0005 0.0007

(0.49, 0.42, 0.09) 0.0005 0.0251 0.0003 0.0003 0.0002 0.0003

(0.25, 0.50, 0.25) 0.0002 0.0241 0.0003 0.0003 0.0002 0.0002

a p value from logistic-regression test.
b p value from HW-proportion test.
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Table 6. Power Comparison at 0.01, 0.005, and 0.001 Significance Levels in Simulations for the General Model

Power for Logistic Model

Power for TS Power for TSM

Empirical Powers Exact Powers Empirical Powers Exact Powers

Data Sets 0.01 0.005 0.001 0.01 0.005 0.001 0.01 0.005 0.001 0.01 0.005 0.001 0.01 0.005 0.001

b ¼ 0.3 (OR ¼ 1.35)

(0.81, 0.18, 0.01) 0.47 0.41 0.17 1.00 1.00 0.74 1.00 0.97 0.60 1.00 0.99 0.72 1.00 0.97 0.58

(0.49, 0.42, 0.09) 0.72 0.61 0.39 1.00 1.00 0.85 1.00 0.98 0.81 1.00 0.98 0.84 1.00 0.98 0.80

(0.25, 0.50, 0.25) 0.83 0.75 0.50 1.00 1.00 0.83 1.00 0.99 0.83 1.00 0.99 0.83 1.00 0.99 0.83

b ¼ 0.5 (OR ¼ 1.65)

(0.81, 0.18, 0.01) 0.76 0.67 0.47 1.00 1.00 0.87 1.00 1.00 0.76 1.00 1.00 0.87 1.00 0.99 0.76

(0.49, 0.42, 0.09) 0.98 0.98 0.94 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99

(0.25, 0.50, 0.25) 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Table 6 gives the corresponding power-comparison re-

sults at the nominal significance levels 0.01, 0.005, and

0.001. Two panels with respect to TS and TSM are shown

in the table. Our approach resulted in much-higher power

than did the logistic-regression approach. All the empirical

powers and exact powers were close to 100% at signifi-

cance levels 0.01 and 0.005 and were much higher at level

0.001 as compared to those from logistic regression. Even

for the data set generated with OR¼ 1.65 and genotype fre-

quencies 25%, 50%, and 25%, which might be considered

to already have enough power with the use of logistic re-

gression, we still saw an increase in the power from 96%

to 100% at significance level 0.001. In addition to the re-

sults shown in Tables 5 and 6, we also studied the scenarios

using OR ¼ 2.01 (coefficient of logistic model ¼ 0.7). Sim-

ilar results were obtained. For example, when the genotype

frequencies 81%, 18%, and 1% and OR ¼ 2.01 were as-

sumed, the observed powers for logistic regression were

93%, 91%, and 77% for significance levels 0.01, 0.005,

and 0.001, respectively. For both the proposed measures,

the empirical powers and exact powers were approxi-

mately 100% at levels 0.01 and 0.005 and about 95% at

level 0.001, based on 100 replicates. Like the results for

Model 1, the TSM measure had results similar to those of

the TS measure, which is also shown in Tables 5 and 6.
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The average p values and power-comparison results for

the current-smoker model are reported in Tables 7 and 8.

It is not surprising that more significant average p values

for logistic regression are seen compared to those in the

general model, because the most-significant risk factor

for lung cancer, smoking status, was missing from this

model. We see expected trends in average p values and

power comparisons for both TS and TSM measures in the

current-smoker model, which are similar to those de-

scribed in the general model above. To conclude, the pro-

posed approach performed better than did traditional lo-

gistic regression with the use of the simulated data from

lung-cancer models.

Type I Error Estimate

To evaluate whether our approach can effectively control

the type I error probability, we used only the significance

determined by the exact p values for both measures. Table 9

reports the observed type I error rates at the defined sig-

nificances of 0.05, 0.01, 0.005, and 0.001 for all the data

sets based on 10,000 replicates. The results are organized

into three groups with respect to the logistic model, TS,

and TSM. For example, data set 1 in Model 1 was generated

with b0 ¼ �2.0, b1 ¼ 0, and b2 ¼ 0.3, and SNP X2 was ob-

served. When the nominal significance level was 0.05,
Table 7. Average p Values from Different Tests in Simulations for Current-Smoker Model

Data Sets p-logita p-HWPb

TS TSM

Empirical TS p Values Exact TS p Values Empirical TSM p Values Exact TSM p Values

b ¼ 0.3 (OR ¼ 1.35)

(0.81, 0.18, 0.01) 0.0124 0.0274 0.0007 0.0011 0.0008 0.0011

(0.49, 0.42, 0.09) 0.0049 0.0228 0.0004 0.0005 0.0004 0.0005

(0.25, 0.50, 0.25) 0.0058 0.0242 0.0005 0.0005 0.0005 0.0005

b ¼ 0.5 (OR ¼ 1.65)

(0.81, 0.18, 0.01) 0.0049 0.0255 0.0003 0.0005 0.0003 0.0005

(0.49, 0.42, 0.09) 0.0007 0.0251 0.0003 0.0003 0.0003 0.0003

(0.25, 0.50, 0.25) 0.0001 0.0263 0.0003 0.0003 0.0002 0.0003

a p value from logistic-regression test.
b p value from HW-proportion test.



Table 8. Power Comparison at 0.01, 0.005, and 0.001 Significance Levels in Simulations for Current-Smoker Model

Power for Logistic Model

Power for TS Power for TSM

Empirical Powers Exact Powers Empirical Powers Exact Powers

Data Sets 0.01 0.005 0.001 0.01 0.005 0.001 0.01 0.005 0.001 0.01 0.005 0.001 0.01 0.005 0.001

b ¼ 0.3 (OR ¼ 1.35)

(0.81, 0.18, 0.01) 0.57 0.46 0.20 1.00 1.00 0.78 1.00 0.99 0.61 1.00 1.00 0.76 1.00 0.96 0.61

(0.49, 0.42, 0.09) 0.89 0.69 0.49 1.00 0.99 0.93 1.00 0.99 0.90 1.00 0.99 0.92 1.00 0.99 0.91

(0.25, 0.50, 0.25) 0.80 0.74 0.51 1.00 1.00 0.91 1.00 1.00 0.88 1.00 1.00 0.91 1.00 1.00 0.90

b ¼ 0.5 (OR ¼ 1.65)

(0.81, 0.18, 0.01) 0.83 0.79 0.55 1.00 1.00 0.87 1.00 0.99 0.76 1.00 1.00 0.96 1.00 0.99 0.89

(0.49, 0.42, 0.09) 0.98 0.98 0.92 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99

(0.25, 0.50, 0.25) 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99
based on 10,000 replicates, the null hypothesis was re-

jected 505 times for the logistic-regression model, 391

times for the exact method of TS, and 394 times for the ex-

act method of TSM. The corresponding type I error proba-

bilities were 0.0505, 0.0391, and 0.0394, which agree well

with the nominal value of 0.05. In most situations, as com-

pared to the error rates for the logistic model, the type I

error rates were better for the exact methods of both

measures. Therefore, our approach conserves good control

over type I error.

Application to Real Diseases

We next applied our approach to the case-control associa-

tion studies of two different diseases: prostate cancer (PC

[MIM 176807]) and squamous cell carcinoma of head

and neck (SCCHN [MIM 275355]). Because our approach

has exact formulas and the exact p values were considered

satisfactory throughout the simulation studies, we calcu-

lated only the exact p values for both TS and TSM by using

Equations (4) and (7). In order to calculate TS and TSM, we

used the p values obtained from regression-based methods

and calculated the p values of the HW-proportion devia-
tion in cases by using the genotype samples provided by

the cancer studies used. In this section, we assessed the

deviation from HW proportion by using the exact test, as

before.

Prostate Cancer

The first example of prostate cancer used the results from

a case-control study of 1012 men,29 which investigated

the role of toll-like receptor 4 (TLR4 [MIM 603030]) in

prostate-cancer susceptibility. The authors identified six

SNPs that comprehensively captured the common genetic

variation of the locus and tested them in 506 cases and 506

controls. Our aim was to evaluate the performance of the

proposed approach with real data. Therefore, for the pur-

pose of simplification, we selected only one disease-related

SNP, rs10759932, which was the most significant SNP asso-

ciated with prostate cancer in that study.

For this study, the p value provided by the Cheng et al.

paper,29 the p value for the HW-proportion deviation in

cases, and the exact p values of TS and TSM are reported

in the upper panel of Table 10. The p value for association

of the SNP rs10759932 with prostate cancer was 0.006.29

The p value for the HW proportion was 0.0241. The exact
Table 9. Estimated Type I Error Probability at 0.05, 0.01, 0.005, and 0.001 Significance Levels in Simulation Studies

Model Data Sets

Type I Error Probability

Logistic Model Exact TS Exact TSM

0.05 0.01 0.005 0.001 0.05 0.01 0.005 0.001 0.05 0.01 0.005 0.001

1 Data 1 0.0505 0.0108 0.0058 0.0010 0.0391 0.0069 0.0034 0.0009 0.0394 0.0068 0.0032 0.0009

1 Data 2 0.0519 0.0094 0.0051 0.0008 0.0391 0.0083 0.0048 0.0008 0.0388 0.0083 0.0046 0.0008

1 Data 3 0.0452 0.0091 0.0044 0.0009 0.0373 0.0065 0.0035 0.0002 0.0369 0.0067 0.0033 0.0002

1 Data 4 0.0457 0.0083 0.0042 0.0005 0.0371 0.0072 0.0037 0.0003 0.0377 0.0068 0.0039 0.0003

2 General Lung-Cancer Population

2 (0.81, 0.18, 0.01) 0.0546 0.0104 0.0058 0.0013 0.0402 0.0072 0.0029 0.0006 0.0397 0.0073 0.0029 0.0006

2 (0.49, 0.42, 0.09) 0.0520 0.0107 0.0058 0.0011 0.0453 0.0088 0.0039 0.0006 0.0451 0.0088 0.0037 0.0006

2 (0.25, 0.50, 0.25) 0.0537 0.0106 0.0049 0.0013 0.0418 0.0092 0.0050 0.0013 0.0406 0.0095 0.0049 0.0012

2 Current-Smoker Lung-Cancer Population

2 (0.81, 0.18, 0.01) 0.0549 0.0103 0.0051 0.0010 0.0368 0.0075 0.0040 0.0008 0.0375 0.0075 0.0040 0.0010

2 (0.49, 0.42, 0.09) 0.0498 0.0096 0.0048 0.0002 0.0448 0.0092 0.0053 0.0006 0.0440 0.0093 0.0052 0.0006

2 (0.25, 0.50, 0.25) 0.0491 0.0104 0.0057 0.0011 0.0514 0.0094 0.0046 0.0009 0.0513 0.0094 0.0045 0.0009
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Table 10. p Values from Real-Disease Examples

Disease SNP Genotype Cases Controls p Value p-HWPa Exact TS p Values Exact TSM p Values

Prostate Cancer rs10759932 TT 370 358 6.00E-03 2.41E-02 4.33E-04 4.35E-04

CT 117 143

CC 19 4

Head and Neck Cancer A1298C AA 328 274 4.00E-04 7.89E-04 8.41E-07 9.01E-07

AC 199 240

CC 10 31

ACþCC 209 271

a p value from HW-proportion test.
p values for TS and TSM were 0.000433 and 0.000435,

which are more significant than the p value reported in

the paper.

Head and Neck Cancer

The second example of head and neck cancer was from the

study of Neumann et al.,30 which is a hospital-based case-

control association study involving 537 cases and 545

controls. They found that the methylenetetrahydrofolate

reductase (MTHFR [MIM 607093]) 1298AC/CC genotypes

(rs1801131) were associated with an approximately 35% re-

duction in the risk of squamous cell carcinoma of the head

and neck compared to the AA genotype. We used this pro-

tective polymorphism A1298C as another example (in the

previous example, the SNP was a risk factor). We calculated

the p value by using the two-sided Fisher’s exact test, based

on the genotypes in cases and controls given in the paper.

The lower panel of Table 10 shows the p value from the

Fisher’s exact test, the p value for the HW-proportion devi-

ation in cases, and exact p values of TS and TSM for the head

and neck cancer study. The p value calculated from the

Fisher’s exact test was 0.0004 (OR ¼ 0.64). The p value of

the HW-proportion test in cases was 0.000789, with the ex-

act test used. And, the exact p values were 0.000000841 and

0.000000901 for TS and TSM, respectively, which were,

once again, more significant than that reported in the study.

Compared to the p values obtained by the use of tradi-

tional regression-based approaches of genetic-association

study, significantly smaller p values were achieved with

our approach for both real-data examples. TS and TSM per-

formed similarly, as before, and worked well for both risk

and protective SNPs.

Discussion

Traditional approaches to the assessment of genetic asso-

ciation between SNPs and disease status are the logistic-

regression model and the generalized linear model. Re-

searchers have suggested that the deviation of genotype

frequencies from HW proportion among cases can provide

additional evidence for a real association between diseases

and SNPs. In this paper, we have shown that this is indeed

the case.

Here, we have proposed an approach to the performance

of genetic-association studies between disease outcomes
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and SNPs with the use of case-control data. This approach

uses the mean-based tail-strength measure to take into

account the significance of the logistic-regression model

using case and control data simultaneously with depar-

tures from HW proportion in the case group. The tail-

strength measure is a linear combination of the difference

between ranked and expected p values. In many situations,

median-based estimators might be more robust, especially

for extreme observations. Therefore, we developed a mea-

sure for assessing tail strength with the use of median

values, which we call the tail-strength-median (TSM) mea-

sure. Both measures have a close relationship to the FDR

approach to multiple-hypothesis testing. We have derived

exact formulas for the calculation of p values for both

measures. In addition, we have proposed an approach for

evaluating empirical p values with the use of a resampling

procedure.

We conducted simulation studies of two different logis-

tic models to illustrate the performance of our approach.

The first simulation model (Model 1) had SNPs as the

only risk factors of disease. The other simulation model

(Model 2) included two revised lung-cancer models (the

model of the general population and that of the current-

smoker population) based on a real lung-cancer study.23

Various ORs and genotype frequencies were studied in

Model 2. Our approach worked well in both models. The

resulting average exact p values and empirical p values

from both measures were more significant than the tradi-

tional logistic p values. When the logistic p values were

already very significant, our approach still obtained com-

parable empirical and exact p values. Power-comparison

results showed that the tail strength measure added signif-

icant power to the traditional logistic-regression model for

genetic-association study by integrating evidence from

HW-proportion deviation in the case group with associa-

tion from traditional regression approaches. Further simu-

lation was performed to show that our approach can effec-

tively control the type I error probabilities.

Two disease-related SNPswereused as examples of realdis-

eases todemonstrate the performanceof ourapproach. One,

SNP rs10759932, is associated with prostate cancer; the

other, MTHFR polymorphism A1298C, is associated with

head and neck cancer. The p values obtained from the liter-

atures were used for the purpose of comparison. Our ap-

proach performed very well in all scenarios studied. Our



approach is also applicable to other statistical tests that

could be considered for association studies in the literature,

including piecewise logistic regression,31 nonparametric lo-

gistic regression,32 and functional logistic regression.33

In the present paper, we have considered the association

between one single, independent SNP and the disease in

question. In the future, we would like to extend the idea

proposed in this paper to studies of association between

multiple independent and correlated SNPs and diseases si-

multaneously. In such situations, it might be possible to in-

tegrate the linkage disequilibrium among SNPs, which are

close to each other as well.

Appendix 1

Derivations for the Density Functions of TS and TSM

Density Function of TS: The original p values are uni-

formly distributed under the null hypothesis; therefore, or-

dered p values p(1) and p(2) follow a beta distribution under

the null hypothesis, and the joint probability distribution

is34 fPð1Þ,Pð2Þ ðpð1Þ, pð2ÞÞ ¼ 2, 0 % pð1Þ% pð2Þ% 1. Consider the

transformation U ¼ TS ¼ 1� ð3=2ÞPð1Þ � ð3=4ÞPð2Þ and

V ¼ Pð1Þ. So, solving the equations for p(1) and p(2) in terms

of observed values u ¼ 1� ð3=2Þpð1Þ � ð3=4Þpð2Þ and

v ¼ pð1Þ, we get the inverse transformation pð1Þ ¼ v and

pð2Þ ¼ ð4=3Þ � ð4=3Þu� 2v. And the Jacobian of the trans-

formation is J ¼ 4=3.

Therefore, the joint probability of U and V is

fU ,Vðu,vÞ ¼ fPð1Þ , Pð2Þ ðpð1Þ, pð2ÞÞjJj ¼ 8=3. The domain for U

and V can be found accordingly:
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According to the settings of transformation, the density

function of TS is
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Given an observation of TS*, we can calculate the exact

p values of TS:

p� value ¼
ð1

TS�
fTSðxÞdx

¼

�
29
54

�
�
�

20
27

�
TS� �

�
8

27

�
TS�2, TS� ˛½ �1:25, 0:25��

16
27

�
�
�

32
27

�
TS� þ

�
16
27

�
TS�2, TS� ˛ð0:25, 1� :

(

Density Function of TSM: Now, consider the trans-

formation U ¼ TSM ¼ 1� ð1þ 1=
ffiffiffi
2
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2
p
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According to the settings of transformation, the density

function of TSM is
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Therefore, given an observation of TSM*, we can calcu-

late the exact p values of random variable TSM:
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ð1
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Appendix 2

Permutation Test

To examine the performance of the permutation test used

in this paper, we picked one replicate of data from lung-

cancer-model data sets and plotted the histograms for per-

mutated p values for both logistic regression and HW pro-

portion in cases, as well as the corresponding empirical

and exact TS and TSM values. The example data set was

generated with the use of the general lung-cancer model

with OR for SNP ¼ 1.65 and genotype frequencies of

49%, 42%, and 9%. Figure 1 shows all of the histograms
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(permutated logistic p values, permutated HW-proportion

p values, permutated TS, and permutated TSM) and the

probability-density-function curves of TS and TSM random

variables. The permutation p values of the logistic regres-

sion test and the HW-proportion test in cases are approxi-

mately uniformly distributed. The permutated TS and TSM

values are skewed to the right, which agrees with their ex-

act probability-density-function curves. And, the empirical

distributions are a good fit for the exact distributions for

both measures.
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Web Resources

The URLs for data presented herein are as follows:

Computing program, http://www.epigenetic.org/software.php

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim/
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